Preliminary

\square February 2001 Revised August 2001			
74 VCX 2373			
Low Voltage 32-Bit Transparent Latch			
with 3.6V Tolerant Inputs and Outputs (Preliminary)			
General D	scription		Features
The VCX32373 with 3-STATE ou applications. The appear to be tran (LE) is HIGH. W setup time is latc Output Enable puts are in a high The 74VCX32373 3.6 V) V_{CC} applic The 74VCX32373 technology to ach ing low CMOS po	ontains thirty-two puts and is intend device is byte cont parent to the data wh en LE is LOW, the ed. Data appears $\bar{E})$ is LOW. When impedance state. is designed for low tions with I/O compa is fabricated with eve high speed oper ver dissipation.	non-inverting latches ed for bus oriented rolled. The flip-flops hen the Latch enable data that meets the n the bus when the E is HIGH, the out- w voltage $(1.65 \mathrm{~V}$ to tibility up to 3.6 V . an advanced CMOS ation while maintain-	- $1.65 \mathrm{~V}-3.6 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ supply operation ■ 3.6V tolerant inputs and outputs - $\mathrm{t}_{\mathrm{PD}}\left(\mathrm{I}_{\mathrm{n}}\right.$ to $\left.\mathrm{O}_{\mathrm{n}}\right)$ 3.0 ns max for 3.0 V to $3.6 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ 3.4 ns max for 2.3 V to $2.7 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ 6.8 ns max for 1.65 V to $1.95 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ - Power-off high impedance inputs and outputs ■ Support live insertion and withdrawal (Note 1) - Static Drive ($\mathrm{l}_{\mathrm{OH}} / \mathrm{l}_{\mathrm{OL}}$) $\pm 24 \mathrm{~mA} @ 3.0 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ $\pm 18 \mathrm{~mA} @ 2.3 \mathrm{~V} \mathrm{~V}_{\mathrm{Cc}}$ $\pm 6 \mathrm{~mA} @ 1.65 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ ■ Uses patented noise/EMI reduction circuitry - Latch-up performance exceeds 300 mA ■ ESD performance: Human body model > 2000V Machine model > 200V - Packaged in plastic Fine-Pitch Ball Grid Array (FBGA) Note 1: To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pull-up resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.
Ordering Code:			
Ordering Numbe	Package Number		Package Description
$\begin{aligned} & \hline 74 \mathrm{VCX} 32373 \mathrm{GX} \\ & \text { (Note 2) } \end{aligned}$	BGA96A	$\begin{aligned} & \text { 96-Ball Fine-Pitch Br } \\ & \text { [TAPE and REEL] } \end{aligned}$	Grid Array (FBGA), JEDEC MO-205, 5.5mm Wide
Note 2: BGA package Logic Sym		only.	

Preliminary
74VCX32373

Connection Diagram
Pin Assignment for FBGA

(Top Thru View)

Pin Descriptions

Pin Names	Description
$\overline{\mathrm{OE}}_{\mathrm{n}}$	Output Enable Input (Active LOW)
LE	Latch Enable Input
$\mathrm{I}_{\mathrm{n}}-\mathrm{I}_{31}$	Inputs
$\mathrm{O}_{0}-\mathrm{O}_{31}$	Outputs

FBGA Pin Assignments

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
\mathbf{A}	O_{1}	O_{0}	$\overline{\mathrm{OE}}_{1}$	LE_{1}	I_{0}	I_{1}
\mathbf{B}	O_{3}	O_{2}	GND	GND	I_{2}	I_{3}
\mathbf{C}	O_{5}	O_{4}	$\mathrm{~V}_{\mathrm{CC}}$	V_{CC}	I_{4}	I_{5}
\mathbf{D}	O_{7}	O_{6}	GND	GND	I_{6}	I_{7}
\mathbf{E}	O_{9}	O_{8}	GND	GND	I_{8}	I_{9}
\mathbf{F}	O_{11}	O_{10}	$\mathrm{~V}_{\mathrm{CC}}$	V_{CC}	I_{10}	I_{11}
\mathbf{G}	O_{13}	O_{12}	GND_{2}	GND	I_{12}	I_{13}
\mathbf{H}	O_{14}	O_{15}	$\overline{\mathrm{OE}}_{2}$	LE_{2}	I_{15}	I_{14}
\mathbf{J}	O_{17}	O_{16}	$\overline{\mathrm{OE}}_{3}$	LE_{3}	I_{16}	I_{17}
\mathbf{K}	O_{19}	O_{18}	GND_{2}	GND	I_{18}	I_{19}
\mathbf{L}	O_{21}	O_{20}	$\mathrm{~V}_{\mathrm{CC}}$	V_{CC}	I_{20}	I_{21}
\mathbf{M}	O_{23}	O_{22}	GND	GND	I_{22}	I_{23}
\mathbf{N}	O_{25}	O_{24}	GND	GND	I_{24}	I_{25}
\mathbf{P}	O_{27}	O_{26}	$\mathrm{~V}_{\mathrm{CC}}$	V_{CC}	I_{26}	I_{27}
\mathbf{R}	O_{29}	O_{28}	GND	GND	I_{28}	I_{29}
\mathbf{T}	O_{30}	O_{31}	$\overline{\mathrm{OE}}_{4}$	LE	4	I_{31}
I_{30}						

Truth Tables

Inputs			Outputs
LE_{1}	$\overline{\mathrm{OE}}_{1}$	$\mathrm{I}_{0}-\mathrm{I}_{7}$	$\mathrm{O}_{0}-\mathrm{O}_{7}$
X	H	X	Z
H	L	L	L
H	L	H	H
L	L	X	O_{0}
Inputs			Outputs
LE_{2}	$\overline{\mathrm{OE}}_{2}$	$\mathrm{I}_{8}-\mathrm{l}_{15}$	$\mathrm{O}_{8}-\mathrm{O}_{15}$
X	H	X	Z
H	L	L	L
H	L	H	H
L	L	X	O_{0}

$\mathrm{H}=$ HIGH Voltage Level
$\mathrm{L}=$ LOW Voltage Level
X = Immaterial (HIGH or LOW, inputs may not float)

Inputs			Outputs
LE_{3}	$\overline{\mathrm{OE}}_{3}$	$\mathrm{I}_{16}-\mathrm{l}_{23}$	$\mathrm{O}_{16}-\mathrm{O}_{23}$
X	H	X	Z
H	L	L	L
H	L	H	H
L	L	X	O_{0}
Inputs			Outputs
LE_{4}	$\overline{\mathrm{OE}}_{4}$	$\mathrm{I}_{24}-\mathrm{I}_{31}$	$\mathrm{O}_{24}-\mathrm{O}_{31}$
X	H	X	Z
H	L	L	L
H	L	H	H
L	L	X	O_{0}

Functional Description

The 74VCX32373 contains thirty-two edge D-type latches with 3-STATE outputs. The device is byte controlled with each byte functioning identically, but independent of the other. Control pins can be shorted together to obtain full 32 -bit operation. The following description applies to each byte. When the Latch Enable (LE_{n}) input is HIGH, data on the I_{n} enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time
its I input changes. When $L E_{n}$ is LOW, the latches store information that was present on the I inputs a setup time preceding the HIGH-to-LOW transition on LE_{n}. The 3STATE outputs are controlled by the Output Enable ($\overline{\mathrm{OE}}_{\mathrm{n}}$) input. When $\overline{\mathrm{OE}}_{n}$ is LOW the standard outputs are in the 2state mode. When $\overline{\mathrm{OE}}_{\mathrm{n}}$ is HIGH, the standard outputs are in the high impedance mode but this does not interfere with entering new data into the latches.

Logic Diagrams

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings(Note 3)	
Supply Voltage (V_{CC})	-0.5 V to +4.6 V
DC Input Voltage (V_{l})	-0.5 V to +4.6 V
Output Voltage (V_{O})	
Outputs 3-STATED	-0.5 V to +4.6 V
Outputs Active (Note 4)	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Input Diode Current (I_{K}) $\mathrm{V}_{\mathrm{I}}<0 \mathrm{~V}$	-50 mA
DC Output Diode Current (l)	
$\mathrm{V}_{\mathrm{O}}<0 \mathrm{~V}$	-50 mA
$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$	+50 mA
DC Output Source/Sink Current ($\mathrm{l}_{\mathrm{OH}} / \mathrm{IOL}_{\mathrm{O}}$)	$\pm 50 \mathrm{~mA}$
DC V ${ }_{\text {cC }}$ or GND Current per	
Supply Pin (ICC or GND)	$\pm 100 \mathrm{~mA}$
Storage Temperature Range ($\mathrm{T}_{\mathrm{STG}}$)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions (Note 5)

Power Supply	
Operating	1.65 V to 3.6 V
Data Retention Only	1.2 V to 3.6 V
Input Voltage	-0.3 V to +3.6 V
Output Voltage $\left(\mathrm{V}_{\mathrm{O}}\right)$	
Output in Active States	0 V to V_{CC}
Output in "OFF" State	0.0 V to 3.6 V
Output Current in $\mathrm{I}_{\mathrm{OH}} / \mathrm{l}_{\mathrm{OL}}$	$\pm 24 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	$\pm 18 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	$\pm 6 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 2.3 V	
Free Air Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Free Air Operating Temperature (T_{A})
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Minimum Input Edge Rate ($\Delta \mathrm{t} / \Delta \mathrm{V}$)

$$
\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V} \text { to } 2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}
$$

$10 \mathrm{~ns} / \mathrm{V}$
Note 3: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.
Note 4: I_{O} Absolute Maximum Rating must be observed.
Note 5: Floating or unused inputs must be held HIGH or LOW.

DC Electrical Characteristics (2.7V $<\mathrm{V}_{\mathrm{Cc}} \leq \mathbf{3 . 6 V}$)

Symbol	Parameter	Conditions	V_{cc} (V)	Min	Max	Units
$\mathrm{V}_{1 \mathrm{H}}$	HIGH Level Input Voltage		2.7-3.6	2.0		V
V_{IL}	LOW Level Input Voltage		2.7-3.6		0.8	V
V_{OH}	HIGH Level Output Voltage	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	2.7-3.6	$\mathrm{V}_{\mathrm{CC}}-0.2$		V
		$\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$	2.7	2.2		V
		$\mathrm{I}_{\mathrm{OH}}=-18 \mathrm{~mA}$	3.0	2.4		V
		$\mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}$	3.0	2.2		V
$\mathrm{V}_{\text {OL }}$	LOW Level Output Voltage	$\mathrm{I} \mathrm{OL}=100 \mu \mathrm{~A}$	2.7-3.6		0.2	V
		$\mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}$	2.7		0.4	V
		$\mathrm{l}_{\mathrm{OL}}=18 \mathrm{~mA}$	3.0		0.4	V
		$\mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$	3.0		0.55	V
I	Input Leakage Current	$0 \leq \mathrm{V}_{1} \leq 3.6 \mathrm{~V}$	2.7-3.6		± 5.0	$\mu \mathrm{A}$
l_{Oz}	3-STATE Output Leakage	$\begin{aligned} & 0 \leq \mathrm{V}_{\mathrm{O}} \leq 3.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \hline \end{aligned}$	2.7-3.6		± 10	$\mu \mathrm{A}$
IofF	Power-OFF Leakage Current	$0 \leq\left(\mathrm{V}_{1}, \mathrm{~V}_{\mathrm{O}}\right) \leq 3.6 \mathrm{~V}$	0		10	$\mu \mathrm{A}$
I_{Cc}	Quiescent Supply Current	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND	2.7-3.6		20	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}} \leq\left(\mathrm{V}_{\mathrm{l}}, \mathrm{V}_{\mathrm{O}}\right) \leq 3.6 \mathrm{~V}$ (Note 6)	2.7-3.6		± 20	$\mu \mathrm{A}$
$\triangle{ }^{\Delta}$	Increase in $\mathrm{I}_{\text {CC }}$ per Input	$\mathrm{V}_{\mathrm{HH}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$	2.7-3.6		750	$\mu \mathrm{A}$

Note 6: Outputs disabled or 3-STATE only.

DC Electrical Characteristics (2.3V $\leq \mathrm{V}_{\mathrm{CC}} \leq \mathbf{2 . 7 V}$)

Symbol	Parameter	Conditions	V_{cc} (V)	Min	Max	Units
V_{IH}	HIGH Level Input Voltage		2.3-2.7	1.6		V
V_{IL}	LOW Level Input Voltage		2.3-2.7		0.7	V
V_{OH}	HIGH Level Output Voltage	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	2.3-2.7	$\mathrm{V}_{\mathrm{CC}}-0.2$		V
		$\mathrm{l}_{\mathrm{OH}}=-6 \mathrm{~mA}$	2.3	2.0		V
		$\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$	2.3	1.8		V
		$\mathrm{I}_{\mathrm{OH}}=-18 \mathrm{~mA}$	2.3	1.7		V
$\mathrm{V}_{\text {OL }}$	LOW Level Output Voltage	$\mathrm{l}^{\mathrm{OL}}=100 \mu \mathrm{~A}$	2.3-2.7		0.2	V
		$\mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}$	2.3		0.4	V
		$\mathrm{l}_{\mathrm{OL}}=18 \mathrm{~mA}$	2.3		0.6	V
I_{1}	Input Leakage Current	$0 \leq \mathrm{V}_{1} \leq 3.6 \mathrm{~V}$	2.3-2.7		± 5.0	$\mu \mathrm{A}$
l_{OZ}	3-STATE Output Leakage	$\begin{aligned} & 0 \leq \mathrm{V}_{\mathrm{O}} \leq 3.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	2.3-2.7		± 10	$\mu \mathrm{A}$
IofF	Power-OFF Leakage Current	$0 \leq\left(\mathrm{V}_{\mathrm{l}}, \mathrm{V}_{\mathrm{O}}\right) \leq 3.6 \mathrm{~V}$	0		10	$\mu \mathrm{A}$
I_{CC}	Quiescent Supply Current	$\mathrm{V}_{1}=\mathrm{V}_{\text {cC }}$ or GND	2.3-2.7		20	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}} \leq\left(\mathrm{V}_{\mathrm{l}}, \mathrm{V}_{\mathrm{O}}\right) \leq 3.6 \mathrm{~V}$ (Note 7)	2.3-2.7		± 20	$\mu \mathrm{A}$

DC Electrical Characteristics $\left(1.65 \mathrm{~V} \leq \mathrm{V}_{\mathrm{Cc}}<\mathbf{2 . 3 V}\right)$

Symbol	Parameter	Conditions	$\begin{gathered} \mathrm{V}_{\mathrm{cc}} \\ (\mathrm{~V}) \end{gathered}$	Min	Max	Units
$\overline{\mathrm{V}_{\mathrm{IH}}}$	HIGH Level Input Voltage		1.65-2.3	$0.65 \times \mathrm{V}_{\mathrm{CC}}$		V
V_{IL}	LOW Level Input Voltage		1.65-2.3		$0.35 \times \mathrm{V}_{\mathrm{CC}}$	V
V_{OH}	HIGH Level Output Voltage	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	1.65-2.3	$\mathrm{V}_{\mathrm{CC}}-0.2$		V
		$\mathrm{l}_{\mathrm{OH}}=-6 \mathrm{~mA}$	1.65	1.25		V
$\overline{\mathrm{V} \text { OL }}$	LOW Level Output Voltage	$\mathrm{l}_{\text {OL }}=100 \mu \mathrm{~A}$	1.65-2.3		0.2	V
		IOL $=6 \mathrm{~mA}$	1.65		0.3	V
I	Input Leakage Current	$0 \leq \mathrm{V}_{1} \leq 3.6 \mathrm{~V}$	1.65-2.3		± 5.0	$\mu \mathrm{A}$
I_{OZ}	3-STATE Output Leakage	$\begin{aligned} & 0 \leq \mathrm{V}_{\mathrm{O}} \leq 3.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	1.65-2.3		± 10	$\mu \mathrm{A}$
IofF	Power-OFF Leakage Current	$0 \leq\left(\mathrm{V}_{1}, \mathrm{~V}_{\mathrm{O}}\right) \leq 3.6 \mathrm{~V}$	0		10	$\mu \mathrm{A}$
I_{CC}	Quiescent Supply Current	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND	1.65-2.3		20	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}} \leq\left(\mathrm{V}_{\mathrm{l}}, \mathrm{V}_{\mathrm{O}}\right) \leq 3.6 \mathrm{~V}$ (Note 8)	1.65-2.3		± 20	$\mu \mathrm{A}$

Note 8: Outputs disabled or 3-STATE only.

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$						Units
		$\mathrm{V}_{\text {cc }}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$		$\mathrm{V}_{\text {cc }}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$		$\mathrm{V}_{\mathrm{cc}}=1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$		
		Min	Max	Min	Max	Min	Max	
$\mathrm{t}_{\text {PHL }}$, tPLH	Propagation Delay I_{n} to O_{n}	0.8	3.0	1.0	3.4	1.5	6.8	ns
$\mathrm{t}_{\text {PHL, }}$, $\mathrm{t}_{\text {PLH }}$	Propagation Delay LE to O_{n}	0.8	3.0	1.0	3.9	1.5	7.8	ns
${ }_{\text {tPzL, }}$ tPzH	Output Enable Time	0.8	3.5	1.0	4.6	1.5	9.2	ns
$\mathrm{t}_{\text {PLZ }}$, tPHZ	Output Disable Time	0.8	3.5	1.0	3.8	1.5	6.8	ns
$\mathrm{t}_{\text {s }}$	Setup Time	1.5		1.5		2.5		ns
t_{H}	Hold Time	1.0		1.0		1.0		ns
${ }_{\text {tw }}$	Pulse Width	1.5		1.5		4.0		ns

Note 9: For $\mathrm{C}_{\mathrm{L}}=50_{\mathrm{p}} \mathrm{F}$, add approximately 300 ps to the AC maximum specification

Dynamic Switching Characteristics

Symbol	Parameter	Conditions	$\mathrm{V}_{\text {cc }}$	$\mathrm{T}_{\text {A }}=+25^{\circ} \mathrm{C}$	Units
			(V)	Typical	
$\mathrm{V}_{\text {OLP }}$	Quiet Output Dynamic Peak $\mathrm{V}_{\text {OL }}$	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	1.8	0.25	v
			2.5	0.6	
			3.3	0.8	
$\overline{\mathrm{V} \text { OLV }}$	Quiet Output Dynamic Valley $\mathrm{V}_{\text {OL }}$	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	1.8	-0.25	v
			2.5	-0.6	
			3.3	-0.8	
$\mathrm{V}_{\text {OHV }}$	Quiet Output Dynamic Valley $\mathrm{V}_{\text {OH }}$	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	1.8	1.5	v
			2.5	1.9	
			3.3	2.2	

Capacitance

Symbol	Parameter	Conditions	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	Units
			Typical	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}, 2.5 \mathrm{~V}$ or $3.3 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V}$ or V_{CC}	6	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}, 2.5 \mathrm{~V}$ or 3.3 V	7	pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC},} \mathrm{f}=10 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{CC}}=1.8 \mathrm{~V}, 2.5 \mathrm{~V} \text { or } 3.3 \mathrm{~V} \end{aligned}$	20	pF

AC Loading and Waveforms

TEST	SWITCH
$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\mathrm{PHL}}$	Open
$\mathrm{t}_{\text {PZL }}, \mathrm{t}_{\text {PLZ }}$	6 V at $\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V} ;$
	$\mathrm{V}_{\mathrm{CC}} \times 2$ at $\mathrm{V}_{\mathrm{CC}}=2.5 \pm 0.2 \mathrm{~V} ; 1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$
$\mathrm{t}_{\text {PZH }}, \mathrm{t}_{\text {PHZ }}$	GND
FIGURE 1. AC Test Circuit	

FIGURE 2. Waveform for Inverting and Non-Inverting Functions

FIGURE 3. 3-STATE Output HIGH Enable and Disable Times for Low Voltage Logic

FIGURE 4. 3-STATE Output LOW Enable and Disable Times for Low Voltage Logic

FIGURE 5. Propagation Delay, Pulse Width and $t_{\text {rec }}$ Waveforms

FIGURE 6. Setup Time, Hold Time and Recovery Time for Low Voltage Logic

Symbol	$\mathrm{V}_{\mathbf{C c}}$		
	$\mathbf{3 . 3 V} \pm \mathbf{0 . 3 V}$	$\mathbf{2 . 5 V} \pm \mathbf{0 . 2 V}$	$\mathbf{1 . 8 V} \pm \mathbf{0 . 1 5 V}$
V_{mi}	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{mo}}$	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{X}}$	$\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{Y}}$	$\mathrm{V}_{\mathrm{OH}}-0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$

Physical Dimensions inches (millimeters) unless otherwise noted

NOTES:
A. THIS PACKAGE CONFORMS TO JEDEC M0-205
B. ALL DIMENSIONS IN MILLIMETERS
C. LAND PATTERN RECOMMENDATION: NSMD (Non Solder Mask Defined)
.35MM DIA PADS WITH A SOLDERMASK OPENING OF .45MM CONCENTRIC TO PADS
D. DRAWING CONFORMS TO ASME Y14.5M-1994

BGA96ArevE
96-Ball Fine-Pitch Ball Grid Array (FBGA), JEDEC MO-205, 5.5mm Wide Package Number BGA96A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life suppor device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
